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Fig. 1. Four simple but rich physical protocols we introduce to Computer Graphics in order to verify the physical correctness of codes for thin elastic rods and
plates, as well as dry frictional contact. For each test, our experimental data is shown side-by-side with a validated simulation output. From left to right: the
Cantilever test (Discrete Elastic Rod simulation), the Bend-Twist test (Super-Helix simulation), the Lateral Buckling test (FenicsShell simulation),
and the Stick-Slip test (Argus simulation). While experimental and synthetic geometries indeed match, our validation protocols are actually much richer
than plain geometric comparisons. Indeed, they are characterized by scaling laws which only depend on a few dimensionless parameters, making them ideal
for benchmarking robustly a large diversity of codes across different physical regimes, without having to worry about scales or dimensions.

We introduce a selected set of protocols inspired from the Soft Matter Physics
community in order to validate Computer Graphics simulators of slender
elastic structures possibly subject to dry frictional contact. Although these
simulators were primarily intended for feature film animation and visual
effects, they are more and more used as virtual design tools for predicting
the shape and deformation of real objects; hence the need for a careful,
quantitative validation. Our tests, experimentally verified, are designed to
evaluate carefully the predictability of these simulators on various aspects,
such as bending elasticity, bend-twist coupling, and frictional contact. We
have passed a number of popular codes of Computer Graphics through
our benchmarks by defining a rigorous, consistent, and as fair as possible
methodology. Our results show that while some popular simulators for
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plates/shells and frictional contact fail even on the simplest scenarios, more
recent ones, as well as well-known codes for rods, generally performwell and
sometimes even better than some reference commercial tools of Mechanical
Engineering. To make our validation protocols easily applicable to any
simulator, we provide an extensive description of our methodology, and we
shall distribute all the necessary model data to be compared against.
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1 INTRODUCTION
In the last decades, a number of numerical simulators have been
provided by the Computer Graphics (CG) community to compute the
statics and dynamics of slender elastic structures, possibly subject
to frictional contact. Initially, these codes were primarily intended
for the movie industry where the important evaluation criteria are
visual realism and artistic authoring. Such simulators have been
successfully leveraged to animate, for instance, hair, fur and cloth of
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virtual characters [Baraff and Witkin 1998; Baraff et al. 2003; Daviet
2020; Daviet et al. 2011; Kaufman et al. 2014; McAdams et al. 2009].
Yet nowadays, the growing demand of the movie industry for

mixing virtual and real shots in a seamless fashion constantly pushes
forward the limits of simulation in terms of realism, up to some
quantitative matching with reality [Museth 2020]. Besides, with
the advance of computational fabrication, CG simulators are now
more and more used for virtual prototyping tasks, where the ulti-
mate goal is not to make images, but to build actual objects with
desired properties. Among recent developments in this area, we
can cite cloth material identification and prototyping [Bartle et al.
2016; Wang 2018; Yang et al. 2017], architectural design [Gavriil
et al. 2020; Laccone et al. 2019; Panetta et al. 2019], fabrication of
soft robots [Coevoet et al. 2019; Vanneste et al. 2020], and the explo-
ration of new meta-materials [Guseinov et al. 2020; Martínez et al.
2019; Schumacher et al. 2018]. Furthermore, in various communities
ranging from Computer Vision to Biomedicine, a number of works
now study how to learn physics from simulated data in order to
predict reality [Liang et al. 2019; Yang and Lin 2016]; for training,
CG simulators are often preferred to commercial, specialized FEM
softwares, because in general the former offer a free, lighter, and
more user-friendly environment compared to the latter.
Common to all these new applications is the concern to predict

reality in a quantitative way – this is in contrast with traditional
image making which instead focuses on capturing the real world
qualitatively. Unfortunately, tools to measure the physical correct-
ness and accuracy of simulators remain scarce in the Computer
Graphics community. As a result, there is no guarantee that current
CG simulators offer the predictability level required by the target
application. While not critical in movie making, wrong or unreliable
predictions may yield serious consequences in some more sensitive
domains like architectural design or healthcare.

Our goal in this paper is to improve the reliability of CG simulators
so as to push forward their usage not only in hyper-realistic special
effects, but also in material design. To this aim, we introduce a set of
simple yet rich and compact physical protocols, originally designed
to measure physical parameters in Soft Matter Physics, which can,
in turn, be run easily to test the physical correctness of a model,
and the validity of a code. Defining a simple yet robust evaluation
metric, we test a number of popular codes from Computer Graphics
and Computational Mechanics, and carefully analyze our results.
Our study is focused on static scenarios involving slender elas-

tic structures (rods and plates) subject to clamped-free boundary
conditions, gravity, and possibly natural curvature and frictional
contact. The methodology we propose here is however general and
could be extended to other situations. We hope our approach will
be useful in the future to all the people who wish to design a new
model or reimplement an existing one, by allowing them to check
the physical validity of their model or/and of their code.

2 RELATED WORK
Unlike Mechanical Engineering which has a long tradition in phys-
ical and numerical validation, Computer Graphics is not used to
evaluating its models quantitatively in a systematic manner. A first
reason is that for movie and game making – the historical applica-
tions of Computer Graphics – many subjective criteria enter the

loop, such as visual perception, authoring, or aesthetics; all of them
remaining extremely hard to assess. A second reason is that phenom-
ena of interest have long differed between Mechanical Engineering
and Computer Graphics. While Computer Graphics was from its
early stage interested in large displacements of structures, buckling,
tearing, entanglement, and dynamics, all these phenomena were
long considered as undesirable behaviors in Mechanical Engineer-
ing, thus restraining the search for corresponding numerical models
and appropriate validation tools.
Since these early times, both fields have considerably evolved.

While many researchers from Computer Graphics have turned from
pure visual effect to material design applications – the latter re-
quiring more predictability than the former – a sub-community of
Mechanical Engineering now considers so-called extreme mechan-
ics [Krieger 2012] as a new fruitful direction for research [Reis 2015].
However, validation methods applicable to the simulation of com-
plex (or extreme) phenomena, such as post-buckled rods/plates and
frictional contact, remain scarce. We review here the main practices
used in both fields.

Overly simple scenarios. For planar rods, elementary tests can
be performed under the small deflection assumption, comparing
code results against solutions to the linear Euler-Bernoulli beam
equations. Various scenarios can be considered, such as the lin-
ear cantilever beam experiment (clamped-free or clamped-clamped
boundary conditions) or the multiple point bending test (horizontal
beam subject to multiple vertical pressure points), which all generate
some simple analytical solutions [Timoshenko 1953]. For instance,
Martin et al. [2010] compare their unified model for rods and shells
to the linear cantilever test, and Panetta et al. [2019] validate their
rod model implementation using the four point bending test, char-
acterized by a constant bending strain between the two downwards
pressure points. However, such tests are not valid anymore for large
displacements of the structure, which is the case we are interested in.
In this paper we enrich the well-known linear cantilever scenario by
considering nonlinear clamped rods and plates subject to possibly
large gravitational forces (Cantilever test and Lateral Buckling
test, respectively), as well as bending/twisting instabilities emerging
for naturally curved structures (Bend-Twist test).
For frictional contact, a few authors have devised some simple

tests like the falling drape over a plane [Li et al. 2018], which gen-
erates a constant velocity motion but only tests non-penetration
as well as sliding friction. We go one step further by testing the
sticking-sliding threshold (Stick-Slip test), independently of the
material properties.

Qualitative only scenarios. To increase the complexity of valida-
tion scenarios, researchers in Computer Graphics soon departed
from quantitative evaluation and turned instead to a qualitative
assessment of their models. Progressively, a number of tests like
cloth on rotating sphere [Bridson et al. 2002], the cloth funnel [Har-
mon et al. 2008], the reef knot [Harmon et al. 2009], or rod plec-
tonemes [Spillmann and Teschner 2007], became popular and were
adopted for subsequent benchmarking studies [Bergou et al. 2008,
Sec. 9.2] [Li et al. 2018, 2020], even though these remained merely
visual. Notable exceptions to this trend are a few studies mostly
conducted in collaboration with physicists, which can be found on
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rods [Bergou et al. 2008, Sec. 9.1], viscous threads [Bergou et al.
2010], and rigid body impacts [Smith et al. 2012]. In particular,
Bergou et al. [2008] validate the Discrete Elastic Rod model on
the Michell (or Zajac)’s buckling experiment, which depicts a charac-
teristic 2D/3D instability in closed twisted filaments [Goriely 2006].
The Bend-Twist buckling test we introduce and leverage in this
paper is similar in spirit [Miller et al. 2014], but has the advantage of
extending the Cantilever experiment naturally as it features a very
similar setting (gravity, same clamped-free boundary conditions)
while adding a new degree of freedom to the system (naturally curly
shape). This natural progression from one test to another makes our
full validation suite consistent and practical to address as a whole.

Data-driven simulation & measurement protocols. Another com-
mon practice in Computer Graphics to verify the applicability of a
code to material design is to feed it with real data. By adapting stan-
dard measurement protocols, such as for instance the ones provided
by the ASTM International or the Kawabata Evaluation System
(KES) [Kawabata and Niwa 1989] for cloth, or by creating new pro-
tocols suited for the model used [Wang et al. 2011], the aim is to fit
model parameters to measurements so that the geometric output
of the code matches the geometric output of the experiment. The
underlying model does not need to be entirely physical but should
possess enough parameters so that it can capture and reproduce
the diverse phenomena at play in the experiments. This strategy
has been widely used for the fast simulation of soft tissues [Bickel
et al. 2009], the characterization of garments properties [Clyde et al.
2017; Miguel et al. 2012; Wang et al. 2011], or the design of inflatable
structures [Skouras et al. 2012, 2014] and materials with desired
properties [Bickel et al. 2010]. Of course, the next stage amounts to
developing completely blind models through machine learning.
However, validation is much more than fitting: it requires set-

ting physical parameters to their value measured in an independent
fashion. Compared to validated physical models, fitted models are
likely to possess a limited degree of predictability. Interestingly, we
show in this paper that while our methodology is dedicated to the
evaluation of physical numerical models, it can also be exploited to
assess the potential of a fitted or partially fitted model.

Particular dimensional studies. In Mechanical Engineering, proba-
bly the most popular technique to validate a code quantitatively is
to compare it against particular physical experiments spread across
the literature. For instance, in the mechanics of plates and shells,
well-defined scenarios have been defined over time [Sze et al. 2004],
such as the sheared hemispherical shell or the pinched cylindrical
shell. Such benchmark problems can be complex, but in general they
rely on a particular, dimensional choice of parameters. As a result,
although the test can be hard to set up in practice, it only assesses a
particular setting of the code. Moreover, with these scenarios it can
be tricky to compare various, disparate codes in a robust way.

Towards a compact quantitative validation. In contrast to particu-
lar dimensional benchmarks, each one of our tests includes a dimen-
sionless scaling law which compactly represents several regimes of
a complex physical experiment, hence describing a wide parameter
range. Such a law can be verified against the output of any simulator
able to reproduce the corresponding experimental setup, should the

simulator be dimensionalized or dimensionless. This verification
actually assesses many facets of the simulator at once.
Our main inspiration originates from the work of Rasheed et al.

[2020] in Computer Vision. In their study, they train a neural net-
work on a cloth simulator in order to predict friction coefficients in
real cloth motion. To make sure their network learns from realistic
data, they first validate their simulator against the stick-slip scaling
law recently proposed in Soft Matter Physics by Sano et al. [2017].
We build on Rasheed et al.’s validation idea and significantly ex-

tend it by proposing a set of four measurement protocols (among
which is Sano et al.’s protocol ) as new tests for code validation. We
revisit in depth each one of these tests, reconstruct the correspond-
ing scaling law accurately (adapting an existing one and devising a
new one), and validate them experimentally.

3 CONTRIBUTIONS
We evaluate the physical realism of popular simulators in Computer
Graphics for simulating thin elastic rods and plates, possibly subject
to contact and dry friction. To this end, we carefully select and
adapt four measurement protocols from the Soft Matter Physics
community, never introduced to Computer Graphics so far (Sec-
tion 4). These protocols, namely Cantilever, Bend-Twist, Lateral
Buckling, and Stick-Slip, are meant to assess various physical
aspects of a simulator, such as bending, bend-twist coupling, or
frictional contact (see Figure 1). Note that the Cantilever test we
introduce in this paper is a dimensionless test, meaning that it is
able to characterize full deformation regimes (depending on a com-
bination of parameters), and not just particular deformations based
on specific parameters (e.g. a particular material). In this respect,
the Cantilever test is thus much richer than the dimensional can-
tilever test usually leveraged in Computer Graphics for validation
or parameter fitting [Miguel et al. 2012; Wang et al. 2011].
We thoroughly derive scaling laws associated to each protocol

(the one for Lateral Buckling being new), and perform careful ex-
periments to validate theoretical predictions. These scaling laws are
made to be sufficiently simple and rich for revealing the capacity of
a given numerical model to reproduce and predict reality. We then
select a number of popular codes from Computer Graphics as well
as two reference codes from Mechanical Engineering (Section 5)
and define a thorough methodology for benchmarking (Section 6).
We give a (positive or negative) score to each code evaluated on all
applicable protocols. Through a careful analysis of our results, we
show that our tests help discriminate the codes sharply (Section 7).
We finally address limitations of our approach (Section 8), before
concluding. Our protocols and data are made available to the com-
munity as supplementary materials, so that a thorough evaluation
of additional codes can be performed easily by other researchers.

Caveat: What this study is not about. We do not evaluate perfor-
mance nor user-friendliness of a code, even though some rough
speed estimation of use and run are mentioned for merely indicative
purposes. Neither do we evaluate the versatility of a code. Some
codes are specific to one task (e.g. a static planar rod simulator),
others might be more general (e.g. a dynamic cloth simulator). The
range of phenomena which can be simulated by a code is not taken
into account in the overall score attributed to a code.
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4 SELECTION & DESIGN OF PHYSICAL PROTOCOLS
We present here the four protocols that will serve to construct our
benchmarking study. All the details necessary to reproduce our ex-
periments are available in our supplementary document (Section 4).

4.1 Scaling laws
Dimensional analysis [Buckingham 1914] and scaling laws are use-
ful in Physics to understand the nature of phenomena. It is also a
powerful tool for experimentalists who use it to measure unknown
parameters. Yet we show here that scaling laws also have a high po-
tential in terms of code validation. Consider for example the period
Tpd = 2π

√
ℓ/д of the small-amplitude oscillations of a pendulum of

length ℓ, where д is the gravity acceleration. If one were to test a
simulator for the dynamics of such a pendulum, one could either
choose several values of ℓ and д and compare the numerical period
to the formulaTpd = 2π

√
ℓ/д, or plot the numerical period as a func-

tion of ℓ/д and verify that it follows a square-root law. The second
method has several advantages: (i) it illustrates that two different
numerical tests should yield the same period provided the ratio ℓ/д
is the same in both tests, (ii) it can detect some discrepancies in a
simulator that would fail in a certain parameter range (small ℓ/д
for example), and (iii) it allows one to compare simulators working
with dimensional parameters (i.e. having actual units, for example
meters for ℓ) to simulators working with dimensionless parameters
(for example using the dimensionless time t = t/

√
ℓ/д and hence

finding the dimensionless period T pd = 2π ). In conclusion, using
scaling laws allows us to test, on a unique set-up, a complete family
of parameter values with all points collapsing on a single curve,
which we shall refer to as the master curve in this paper.

Building a set-up with a simulator is a long process and it is more
efficient if this set-up can serve to test multiple configurations of pa-
rameters at once. Once the code for reproducing a given experiment
has been written, it is relatively straightforward to launch a large
number of simulations in batches to sample the parameter range
automatically. Having the results collapsing on a master curve is
then very rich in terms of information. The readability of the results
is considerably higher than in the case of a particular dimensional
study where one would compare, for each run, 2 simulations or 1
simulation and 1 experiment.

4.2 The Cantilever test
We discuss a 2D test dating back to the 30’s [Bickley 1934], which
is commonly used by the Soft Matter community for inferring me-
chanical parameters of rods and ribbons, see e.g. Duclaux [2006] or
Fargette [2017]. The main advantage of this test is that, from purely
geometrical considerations and measurements, one can estimate,
with good accuracy, the elastic behaviour of the material. Hereafter
we show that the same geometrical considerations can be harnessed
either for intensive validation of physics-based simulators, or for
calibration of non physics-based simulators.
The soft cantilever consists of a slender, naturally straight rod

or ribbon, clamped horizontally, and deformed in 2D by the action
of gravity, see Figure 2, left. For a rod of radius r , the parameters
involved in the problem are the rod bending rigidity (EI ), its material
density (ρ), its length (L), the area A = πr2 of its cross-section, and
the gravity acceleration (д). Here E is the Young elastic modulus

and I = π
4 r

4 the second moment of area of the cross-section of the
rod. It turns out that one can construct a unique length scale for
this problem, namely the gravito-bending length Lgb =

3
√
EI/(ρAд),

which compares the resistance to bending with the gravitational
force. Thus, for an elastic object deformed by gravity with length
L, its equilibrium shape is effectively determined solely by the di-
mensionless gravito-bending parameter Γ = (L/Lдb )

3, which reads

Γ =
ρAдL3

EI
. (1)

Note that in the case of ribbons, when the cross-section is a rectangle
of width w and thickness h, with h ≪ w , the Young modulus E
becomes E∗ = E/(1−ν2), where ν is the Poisson ratio of the material
[Shield 1992]. As a result, Γ is simply replaced with Γ∗ = (1 − ν2)Γ,

Γ∗ =
ρA∗дL3

Dw
, (2)

where A∗ is the area of the rectangular cross-section, A∗ = wh, and
D is the bending rigidity of the plate, D = Eh3/(12 [1 − ν2]).
The parameter Γ gives an immediate notion of the expected be-

haviour for the deformation of an elastic object. Large values of Γ
lead to large deformations, and conversely low values yield small
deformations. However, the main advantage of this test is that one
can quantitatively compare simulations with experimental and an-
alytical results for a broad range of mechanical and geometrical
parameters. For such comparison, here we chose the aspect ratio
of the final shape, H/W (see Figure 2), and show that this aspect
ratio is an accurate indicator of the quality of the simulation: indeed
the mapping between Γ and H/W is unique (strictly monotonic), so
there is no need to compare global equilibrium shapes or curvature
distributions.

Master curve: solution of the planar elastica. The final shape for
rods and ribbons is governed by the planar elastica equations (i.e.
the Kirchhoff equations for 2D rods, see [Landau and Lifshitz 1959]).
The equilibrium for the internal force F and moment M for an
infinitesimal variation of the arc length s read dF/ds + fext = 0
and dM/ds + t × F = 0, with t the unit tangent to the rod. Free-
end boundary conditions reads F(s = L) = 0 = M(s = L). The
constitutive relation between the bendingmoment and the curvature
dθ/ds readsM = EIdθ/ds , with θ the angle between the horizontal
and the tangent, see Figure 2, left. When gravity is the only external
force, fext = ρAд ey , yielding F = ρAд (L − s) ey and dM/ds +
ρAд (L − s) cosθ ez = 0. Introducing dimensionless variables s̄ =
s/L, x̄ = x/L, and ȳ = y/L, the boundary value problem to be solved
finally reads

d2θ

ds̄2 + Γ(1 − s̄) cosθ = 0 with θ (0) = 0 and
dθ

ds̄
(1) = 0 (3a)

dx̄

ds̄
= cosθ with x̄(0) = 0 (3b)

dȳ

ds̄
= sinθ with ȳ(0) = 0 (3c)

where the aforementioned parameter Γ arises naturally. For Γ values
smaller than ∼ 200, this boundary value problem is easily solved
with simple shooting techniques [Ascher et al. 1995]. However, as Γ
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Fig. 2. Master curve and experimental validation for the Cantilever
test. Left : snapshots of experimental rods under gravity, with 16 different Γ
values. Right : our computed master curve (in black) representing the aspect
ratio of the rod’s shape as a function of Γ, together with our experimental
results. After adjusting the value of the Young modulus (horizontal shift),
our experimental data (circles for rods and squares for ribbons) are in per-
fect agreement with the master curve. Colored circles correspond to the
experimental rods depicted on the left, the color providing a one-to-one
correspondence between shapes and points of the graph. Four synthetic
rods, simulated with Discrete Elastic Rod (see Section 5), are shown for
illustration purposes.

gets larger the problem becomes stiff, and more powerful contin-
uation methods are required. We use the collocation-based con-
tinuation package AUTO07p [Doedel et al. 1991] to compute the
solution of (3) over 8 decades of Γ values, and we plot the aspect
ratio H/W = y(L)/x(L) as a black solid line in Figure 2, right. Fur-
thermore, one can find analytical expressions for the aspect ratio
for small and large Γ values, these are H/W = Γ/8 for Γ ≪ 1 [Gere
2004], and H/W =

√
Γ/2 for Γ ≫ 1, plotted as red dashed lines in

Figure 2.

Experimental validation. In addition to the analytical and numeri-
cal solutions, we include experimental results. We fabricated a long
rod by filling a straight PVC tube with vinylpolysiloxane. The rod
was clamped at different lengths and the aspect ratio H/W was
measured, see circles in Figure 2. We measured the cross-section
radius r ≃ 2.0mm and the rod density ρ ≃ 1200kg/m3. The only
uncertain parameter was the Young modulus, for which we only had
an approximate range of values given by the manufacturer. Starting
from an arbitrary value within this range, our measurements nicely
collapsed onto a single curve having the exact same shape as the

master curve, albeit slightly shifted horizontally (E is inversely pro-
portional to Γ). We could adjust the value as E ≃ 1.08 MPa through a
simple alignment of our measurements on top of the master curve1.
We also present experiments on a ribbon cut from an acetate

sheet of thickness of 0.17 mm. The ribbon has dimension 3× 27 cm2.
It is clamped horizontally at different lengths and the aspect ratio
H/W is reported as squares in Figure 2. The best alignment in this
case was obtained for E∗ = E/(1 − ν2) ≃ 4.19 GPa.

4.3 The Bend-Twist test
While planar equilibria of naturally straight rods are a good starting
point for the mechanical validation and calibration of a simulator,
most of the complex phenomenology observed for elastic rods arises
from the coupling between bending and twist. A physical situation
where this coupling is at play was described by Miller et al. [2014].
We consider a rod of length L with a circular cross-section, and
we note A the area, and I the second moment of area, of the cross-
section. The rod is made from an isotropic, uniform, elastic material
of density ρ, but is cast in such a way that its natural shape is a
twist-free circle of radius R. The rod is then clamped vertically at
one extremity and is left sagging under the action of gravity, while
its other extremity is free. Depending on the material and physical
parameters, the suspended equilibrium shape can be planar (with no
twist), or deformed into a 3D curly shape, see top panel in Figure 3.

Master curve: frontier between 2D and 3D configurations. The de-
formation of rods in 3D is governed by the Kirchhoff equations, see
e.g. Audoly and Pomeau [2010]. We write the position r = (x ,y, z),
the tangent t = dr/ds , and the arc length s ∈ [0,L]. The local frame
t(s), d1(s), d2(s) is used to follow the curvatures and twist deforma-
tions along the rod. We write τ the twist, κ1,2 the two curvatures,
and wrap these in a 3D vector κ(s) = {τ ,κ1,κ2}⊺. In its natural,
uniform configuration κ0, the rod has no twist and is curved in the
plane orthogonal to d2 as κ(s) = κ0 = {0, 0, 1/R}⊺.

The local orthonormal frame follows the Darboux equation

dR/ds = R [κ]×, (4)

where we use the matrix R = [t|d1 |d2] and the vector cross-product
operator2.

The twist and curvatures are found by integrating the balance of
torques K3 dκ/ds + [κ]×K3(κ − κ0) = [ex ]× R⊺ T(s) where T(s) =
ρAд(s − L)ez is the internal force and K3 = EI diag3(1/(1 + ν ), 1, 1)
the diagonal stiffness matrix. Introducing dimensionless variables

s̄ =
s

R
, φ =

L

R
, κ̄(s̄) = κ(s)R, κ̄0 = κ0R, K̄3 = K3/EI , (5)

we finally obtain the dimensionless equation

K̄3
dκ̄

ds̄
+ [κ̄]×K̄3(κ̄ − κ̄0) =

Γ

φ3 (s̄ − φ)[ex ]×R⊺ ez , (6)

1Actually, the quantity that we wish to measure accurately is the product EI . An
adjustment on theCantilevermaster curve proves more robust than using for instance
a traction test, which would measure only the Young modulus E.
2For a 3D vector u = {u0, u1, u2 }

⊺ the cross-product operator is represented by the
skew symmetric matrix

[u]× =

[ 0 −u2 u1
u2 0 −u0
−u1 u0 0

]
, such that u × v = [u]×v.
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Fig. 3. Master curve (ν = 0.5) and experimental validation for the
Bend-Twist test. We use the following code for background color: orange
when the rod shape is 2D, and turquoise when it is 3D. Top: our experimental
rods under gravity, with different values of Γ and φ . Bottom: phase diagram
where our numerical master curve (black) separates the 2D (orange) and
3D (turquoise) regimes. Our experimental points, at 3√Γ/φ ≃ 0.43, with L
from 2.5 cm to 14.6 cm, are drawn with large colored circles, the color labels
identifying the experimental snapshots displayed on the top panel. We also
plot (purple triangles) the numerically-found frontier points of Miller et al.
[2014], together with their experimental points (small circles). All kinds of
data fairly agree with each other. Four synthetic rods (A – D), simulated
with Super-Helix (see Section 5), are shown for illustration purposes.

with Γ defined in Section 4.2. Equations (4) and (6) are subject to the
boundary conditions x(0) = y(0) = z(0) = 0 (clamping point located
at the origin), R(0) = [−ez | −ex |ey ] (vertical downwards clamping),
and κ̄(φ) = (0, 0, 1) (circular natural shape). Both are integrated in
the interval s̄ ∈ [0,φ].

From Equation (6), we see that this test involves two dimension-
less parameters: the gravito-bending parameter Γ, and the curvature
parameter φ. Note that φ/(2π ) corresponds to the number of turns
the rod makes in its natural shape3. The full analysis of this equation
is out of reach for this paper. However the key observation is that
despite the fact it is always possible to find a planar solution (twist
τ (s) = 0, ∀ s), depending on the values of the parameters Γ and φ, it

3In the Bend-Twist protocol, rod self-contact is not accounted for.

might not be stable. There is indeed a specific region in the phase di-
agram where the planar solution is unstable and is then replaced by
a 3D solution. The parameter range, see Figure 3, then has two well-
defined regions. Planar solutions (in orange), are observed for low
and high values of 3√Γ/φ and, in contrast, 3D solutions (in turquoise)
prevail for rod with large φ/(2π ), but are restricted to 3√Γ/φ ≲ 0.62.
Above this limit, the rod remains planar whatever its length and
natural curvature, and for long length cases, the deformed shape
is mainly straight with a hook near the free-end to comply with
boundary conditions. The frontier between 2D and 3D solutions is
characterized by a pitchfork bifurcation and we use AUTO07p (with
ν = 0.5) to numerically follow this bifurcation point and plot the
transition curve in black in Figure 3.

Experimental validation. Curly rods were fabricated by injecting
vinylpolysiloxane in a PVC tube coiled around a rigid cylinder and
letting the elastomer cure for 24 hours [Miller et al. 2014]. We ob-
tained samples with a circular cross-section of radius ≃ 1.8 mm,
a natural curvature 1/R ≃ 57.02 m−1, and a small natural twist
τ ≃ 2.65 m−1. This small intrinsic twist is due to the manufacturing
process as soon as rods have L > 2πR, but it only slightly affects the
results. We used the tabulated value of vinylpolysiloxane Poisson’s
ratio, ν = 0.5, and we reused the Young’s modulus value, E ≃ 1.08
MPa, measured in Section 4.2. The density ρ ≃ 1267 kg/m3 was
obtained by simply weighting our samples.

We took snapshots of the rod clamped at different lengths, see top
panel in Figure 3, and reported experimental parameters with large
circles in the phase diagram, see bottom panel in Figure 3. Discrimi-
nation between 2D and 3D configurations was done visually4. We
found a good agreement between our experimental measurements
and the numerical 2D/3D transition. We complemented the diagram
with experimental points (small circles) and numerically-computed
frontier points (triangles) from Miller et al. [2014].

4.4 The Lateral Buckling test
We now turn to a test involving an elastic structure with a widthw
commensurated to its length L, namely an elastic plate. The thick-
ness h of the plate is small compared to both L and w . As in the
Bend-Twist test, we let the plate hang and sag under its ownweight
and wait for a (pitchfork) bifurcation to occur. In its reference con-
figuration, the plate lies in the (x , z) plane with 0 ≤ X ≤ L and
−w ≤ Z ≤ 0. Gravity is oriented along the −ez direction. The plate
is clamped along its X = 0 edge while the other three edges are
free. The clamped orientation is vertical, along the z axis. In the
deformed configuration, the plate can either stay in the (x , z) plane
or deflect laterally in the ±ey direction and adopt a 3D shape. This
lateral buckling typically occurs when gravity overcomes the elastic
rigidity of the structure.
Lateral buckling instabilities are an important mode of failure

in civil engineering where long steel beams carry important shear
loads, and the history of lateral buckling analysis goes back to the

4The sharp reader may notice that some experimental rods (Figure 3 top right) are
labeled as 2D whereas they slightly look 3D. This 3D shift is due to our residual natural
twist stemming from fabrication constraints, and not to any buckling of the rod. We
accounted for this residual when labeling the experimental rods as 2D or 3D (see also
our supplementary document, Section 4).
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Fig. 4. Master curve (ν = 0.35) and experimental validation for the
Lateral Buckling test. Top: our experimental plates under gravity, with
varying aspect ratiow/L. The background (originally black) has been colored
to indicate whether the plate lies in 2D (orange) or has buckled in 3D
(turquoise). Bottom: phase diagram where the computed master curve (in
black) separates the 2D regime (in orange) from the 3D buckled regime (in
turquoise). Five series of experiments are presented. Each series has fixed
w and h values, and consists in increasing the length L of the suspended
part of the plate. The first four experiments have their squares color-coded
according to the 2D/3D nature of the equilibrium shape. For the uppermost
experiment, the equilibrium shapes are shown in the top panel, and the
color coding of the squares is used for correspondence.

19th century [Michell 1899]. Still, we are not aware of any study
carefully analyzing and building up a collapsing curve (with only
two dimensionless parameters) for this test. This is what we propose
to achieve here.
As in previous sections we nondimensionalize, i.e. we rescale,

lengths with L and forces with Dw/L2, where D is the bending
rigidity of the plate, D = Eh3/(12 [1 − ν2]) (see Section 4.2). Once
these two parameters are set away, we are left with the following
free parameters: the Poisson ratio ν , the widthw/L, the thickness
h/L, and the total weight Γ∗ = Mд/(Dw/L2), where the total mass
of the plate is noted M = ρhwL. Recall from Section 4.2 that Γ∗
differs from Γ = Mд/(EI/L2) by a scaling factor, Γ∗ = (1 − ν2)Γ,
with Dw = E∗I .

Master curve: Our test experiment consists in holding the plate
clamped as explained above, and increasing the parameter Γ∗ while
keeping the other parameters fixed. For Γ∗ = 0 the plate is in its
reference configuration. As Γ∗ increases, the plate only suffers in-
plane shear and extension, but stays in the (x , z) plane. Only when
Γ∗ > Γ∗c does the plate buckle in the third direction and normal
curvature sets in. The critical Γ∗c value depends on the other free
parameters Γ∗c = Γ∗c (w/L,h/L,ν ). To generate an interesting master
curve, our idea was to plot Γ∗c as a function of w/L, as shown in
Figure 4, bottom panel. We work with thin platesh/L ≪ 1,h/w ≪ 1,
that is in the regime where only little transverse (i.e. through the
thickness) shear deformation is present. Consequently h is not a
parameter anymore and we assume we have reached the limit where
Γ∗c = Γ∗c (w/L,ν ). To be on the safe side numerically, we neverthe-
less use the S8R thick shell finite-elements setup of ©Abaqs to
determine Γ∗c . We set ν = 0.35 (corresponding to polyester, which
we use in experiments) and compute the threshold curve with the
buckling eigenvalue analysis module of Abaqus using a high resolu-
tion mesh, i.e. for eachw/L, we compute the critical Γ∗c for which
the total stiffness matrix, composed of the matrix of the base state
and the tangent matrix, becomes singular. The results are plotted in
Figure 4, using h/L = 6 × 10−4. We see in Figure 4 that Γ∗c (w/L = 0)
corresponds to the value evaluated with the Kirchhoff elastic rod
theory Γ∗c (kirchhoff) = 18.2(1 − ν )

√
1 + ν [Michell 1899], and that,

remarkably, Γ∗c increases approximately linearly (with slope ≃ 14.5)
withw/L in the range 0 < w < L that we considered. Interestingly,
we note that this simple linear dependence, extremely practical to
evaluate numerical codes, actually matches the observations previ-
ously made in a lateral buckling problem with a different loading
[Reissner 1995].

To evaluate the dependence of Γ∗c (w/L,ν )w.r.t. the Poisson ratio ν ,
we computed the curve for several ν values and found them to be
approximately parallel, each one emerging from the Kirchhoffw = 0
limit. We conclude that an approximated formula for Γ∗c may be
written as Γ∗c (w/L,ν ) ≃ 18.2 (1 − ν )

√
1 + ν + 14.5 w

L .

Experimental validation. We perform experiments with naturally
flat Poly-Styrene plates with thickness h = 0.10 or 0.14 mm. We
measure densities to be ρ0.10 = 1410 and ρ0.14 = 1260 kg/m3. Using
theCantilever test, wemeasure the Youngmodulus to be E0.10/(1−
ν2) ≃ 7.75 GPa and E0.14/(1 − ν2) ≃ 4.19 GPa. For the Poisson ratio
we use the value ν = 0.35, tabulated at polymerdatabase.com. We
then have L∗gb,0.10 = 7.8 cm and L∗gb,0.14 = 8.2 cm.
We use five samples of widths cut in the range 3 < w < 12cm,

and having either h = 0.10 or 0.14 mm. For each sample, the plate
is clamped vertically, with a suspended length L emerging from the
clamp. Each experiment consists in increasing L from L = 14 to
L = 27cm. For each length value, we place a square on the phase
diagram of Fig. 4 whose color indicates the 2D/3D nature of the
equilibrium shape. Writing y = Γ∗ and x = w/L, each experiment
follow a hyperbola of equation y = (w/Lgb)

3 1/x3.
Experimentally this is a challenging system as the Lateral Buck-

ling instability is very sensitive to both the verticality of the clamp
and the flatness of the plate. Despite these difficulties, we retrieve a
fairly good agreement with the numerical prediction, as shown in
the phase diagram in Figure 4.
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Fig. 5. Master curve and experimental validation for the Stick-Slip
test. Left : Experimental snapshot of a Stick-Slip test with a high friction
coefficient, for ϵy = 0.2. The superposition of the numerical planar elastica
solution (blue line), for the same value ϵy = 0.2, illustrates the very good
agreement between experiments and numerics. Top-Right : our experimental
ribbons under frictional contact with the ground, with vertical deflection ϵy .
The background (originally black) has been colored to indicate whether the
rod is sticking (orange) or slipping (turquoise after slippage, black during
the dynamic transition). Bottom-Right : phase diagram where the master
curve (in black) separates the sticking regime (in orange) from the slipping
regime (in turquoise). The extended contact region (in gray) is not used in
our validation protocol. The (numerical) black and (experimental) purple
curves are plots of the ratio Q/P as a function of ϵy . Ten synthetic rods (in
dark blue), simulated with Super-Helix 2D coupled with So-Bogus (see
Section 5), are depicted on the phase diagram for illustration purposes.

4.5 The Stick-Slip test
Up to now we have dealt with suspended elastic objects deformed
by the action of gravity. However, in many applications in Com-
puter Graphics and Computer Vision, elastic slender objects are
supposed to interact with their surroundings. Thus, testing con-
tact and frictional solvers is of foremost importance for assessing
realistic scenarios.
Rasheed et al. [2020] recently introduced the work of Sano et al.

[2017] as a way to evaluate the Argus code [Li et al. 2018] that they
used for generating cloth training data. Inspired by their approach,
we similarly leverage the Sano’s stick-slip criterion for precisely
evaluating the realism of frictional contact solvers. Unlike them
however, we re-build the mathematical formulation of the master
curve from scratch and carefully verify it experimentally, with a
more elaborated experimental set-up compared to [Sano et al. 2017].
Furthermore, we test multiple codes on this master curve, including
plate and 2D rods simulators coupled with various frictional contact
solvers.

In this so-called Stick-Slip test, a clamped elastic strip, of length
L and rigid enough to neglect gravity effects (Γ ≪ 1), is pushed
quasi-statically against a solid substrate, see Figure 5. The strip and
the substrate interact through normal (P) and tangential (Q) forces
at the contact. As the vertical displacement (∆y ) increases forces do
as well.
Three well-defined regimes are observed in this test depending

on the friction coefficient (µ) and the vertical strain (ϵy = ∆y/L):
stick, slip, and extended contact (orange, turquoise, and gray regions
respectively in Figure 5). In the stick phase, contact is localized at
the lower end of the elastic strip and the contact point does not
move. In the slip phase, friction is no longer able to hold the end
of the strip which slips along the horizontal plane. Finally, in the
extended contact regime the contact interface spreads to a larger
portion of the elastic strip. These three regions are separated by
(i) a Master curve (computed below), (ii) the line ϵy = ϵy,c ≃ 0.33,
and (iii) the line µ = µc ≃ 0.36. These three border curves meet at
the triple point (ϵy,c , µc ). The phase diagram of Figure 5 does not
depend on any mechanical or geometrical property of the system.
Therefore, one can compare frictional contact solvers over a large
range of mechanical scenarios and test their ability to reproduce
the phase diagram.

Master curve: transition between stick and slip regimes. To compute
the Stick-Slip master curve, which partitions the stick and slip
regions, we compute the equilibrium of a clamped planar elastica
as the parameter ϵy is varied. The equilibrium solution gives the
forces P = −P ey and Q = Q ex and friction is accounted for with
the Amontons-Coulomb law. More precisely, once contact is made,
the strip buckles as soon as the vertical force P > 20.2EI/L2. At
buckling the horizontal force is Q = 0 and no friction is required
for the equilibrium to hold. Nevertheless as ϵy is increased the ratio
Q/P grows, and slip occurs as soon as Q/P reaches the Coulomb
coefficient µ. The transition (master) curve is then reached when
the clamped-pinned equilibrium is such thatQ/P = µ. We therefore
compute the ratio Q/P at equilibrium, as function of ϵy and plot
it in the phase diagram, see the black curve in Figure 5. Using
the dimensionless arc length s̄ = s/L, equilibrium is found as the
solution of the following boundary value problem,

d2θ

ds̄2 =
PL2

EI
sinθ +

QL2

EI
cosθ with θ (0) = π/2 ,

dθ

ds̄
(1) = 0 (7a)

dx̄

ds̄
= sinθ with x̄(0) = 0 , x̄(1) = 0 (7b)

dȳ

ds̄
= cosθ with ȳ(0) = 0 , ȳ(1) = 1 − ϵ∗y (7c)

where we note ϵ∗y the value of ϵy on the transition curve.
Note that in Eq. (7a), P and Q only appear divided by the scaling

force EI/L2 and will therefore going to be proportional to it. Hence,
the ratio µ = Q/P will be independent of the mechanical (EI ) and
geometrical (L) properties of the elastic strip.
One can analytically solve Eq. (7) up to a second order in θ by

writing sinθ ≃ θ and cosθ ≃ 1 − θ2. With this weakly nonlinear
approximation, the solution for the master curve reads

Q

P
≃ 0.445

√
ϵy . (8)
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This solution (dashed white line in Figure 5) is not accurate enough
to serve in the present test. A detailed, semi-analytical, solution
of this problem can be found, see e.g. [Mikata 2006], but involves
elliptic functions and a root-finding step. Here, without any lost of
accuracy, we simply solve system (7) numerically and plot Q/P as
a function of ϵy , see the black curve in Figure 5. The triple point
(ϵy,c , µc ) ≃ (0.33, 0.36) is reached when the equilibrium solution is
such that θ (s = L) = π .

Experimental validation. We quasi-statically compress a 260 µm
thick, naturally flat, elastic strip of Poly-Styrene against a rigid sub-
strate. The strip is clamped at the top end to a Futek load cell which
measures the load P . The load cell itself is attached to a Thorlabs
LTM300 motorised stage used to control the vertical displacement
∆y = ϵy L. The substrate is mounted on two horizontal free-to-
roll cylinders, to minimise resistance to horizontal displacement.
A second Futek load cell holds the substrate horizontally and mea-
sures the load Q . An experiment starts at ϵy = 0 and consists in
increasing the vertical displacement with a series of 1mm steps,
each followed by a wait-in-position step of 2 seconds where 2000
force measurements are performed and averaged, for both P and
Q . At each displacement step we take a snapshot of the strip to
compare its shape with numerical computations (see e.g. the image
on Figure 5). We use different sample lengths (L = 20.5 to 28.5cm)
and widths (w = 3 tow = 4.5cm) to explore different L2/EI values.
We stop experiments at vertical strain ϵy = 0.33, and make sure no
material plasticity was encountered during the test.
Depending on the frictional characteristics of the substrate we

obtain two qualitatively different responses of the system.
On the one hand, for smooth substrates (copper, plastic, and

aluminium), we observe the stick to slip transition for ϵy = ϵ∗y .
At this transition point, the force measurements yield a ratio Q/P
which is in good agreement with the numerical Stick-Slip master
curve, see square markers in Figure 5. Note that the value of Q/P at
this point is a way to evaluate the Coulomb friction coefficient µ of
the material. On the other hand, for rough substrates (e.g. sandpaper
with grit size 180) the elastic strip first sticks then transitions into
the extended contact regime. In this case, plotting the experimentally
measured ratio Q/P as a function of ϵy yields the purple curve in
Figure 5, which is in good agreement with the numerical master
curve. For such substrates we cannot infer the friction coefficient µ
from the experimental data, we only know that µ > µc ≃ 0.36.

5 SELECTION OF EXISTING CODES
We have selected a number of numerical models from Computer
Graphics, which are well-known and widely used in the commu-
nity. As a baseline for comparison, we also picked two reference
codes from Mechanical Engineering, among which the widely used
commercial software ©Abaqs. The full list of the 14 codes used
(together with some variants) is provided in Table 1, left column.

Of course, our selection is not exhaustive: it is rather meant to
gather some representative examples. But we hope that the method-
ology we describe in this paper will encourage others to validate
their own numerical model, which will help the community enrich
these results.

5.1 Implementation
As far as possible, to limit implementation bias, we have striven
to use the original code from the authors. This was possible for
all but four of the academic numerical models we have selected,
either by using the free implementation distributed online by the
authors (Super-Clothoid, LibShell, Arcsim, So-Bogus, Argus,
FenicsShell), or upon direct request to the authors (Super-Helix,
Discrete Elastic Rod, Super-Ribbon, Projective Friction). The
four exceptions comprise Projective Dynamics, Discrete Shell,
Bridson-Harmon, and Viscous Friction. However, these four al-
gorithms are simple enough so that we could reimplement them
quite easily with a high level of confidence. Finally, for the commer-
cial software ©Abaqs, we had to use a license paid by our lab, and
did not have access to the source code.

It is noteworthy that the codes we have tested are very disparate
in terms of implementation, parameter input, and general behavior.
In the supplementary document (Section 7) we summarize the main
characteristics of all the codes we have tested.

5.2 Thin elastic rods
A staple of rod models in Computer Graphics is the Discrete Elas-
tic Rod model [Bergou et al. 2010, 2008], which has been used
for various applications ranging from hair simulation [Daviet 2020;
Kaufman et al. 2014] to the design of meta-materials [Schumacher
et al. 2018] and grid shells [Panetta et al. 2019]. The Discrete Elas-
tic Rod (dynamic) model relies on a nodal formulation of the rod
centerline tightly coupled to a material frame via some material
twist around the discrete Bishop frame. While the first paper rigidly
fixes the material frame as the one minimizing the potential elastic
energy of the rod (assuming a vanishing cross-section), the second
one considers in contrast some twist inertia and updates the ma-
terial frame in time through parallel transport. The latter model
has the advantage of yielding a sparse-block stiffness matrix at first
order, allowing for fast implicit integration. The implementation
that we have used was provided by the authors; it is based on this
second method, which offers more stability than the first one.
We have also considered the family of curvature-based mod-

els, namely the Super-Helix [Bertails et al. 2006] and the Super-
Clothoid [Casati and Bertails-Descoubes 2013] models. In contrast
to position-based formulations, these models rely on a curvature-
based parameterization, allowing the formulation of the kinematics
of the rod (i.e. bending and twisting modes) in a fully reduced way,
without the need for inextensibility constraints. In the Super-Helix
model, each element is characterized by uniformmaterial curvatures
and twist and takes the form of a circular helix (or circular arc in 2D).
In our test, we have used the 2D and 3D implementations provided
by the authors (dynamic codes). Super-helices were successfully
used in Computer Graphics for simulating the forward and inverse
dynamics of human hair [Daviet et al. 2011; Derouet-Jourdan et al.
2013; Hu et al. 2017], and their reduced parameterization has been
recently harnessed in the context of soft robotics [Boyer et al. 2020].
Besides, the approach was extended to the Super-Clothoid model,
which features material curvatures and twist linearly varying along
the elements. For our tests we took a static version (provided by
the authors) of the reference (dynamic) implementation available
online [Casati and Bertails-Descoubes 2013].
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We initially intended to test further popular rod models from
Computer Graphics [Hadap 2006; Pai 2002; Spillmann and Teschner
2007], but unlike for plates/shells, we had trouble finding reference
implementations. As rod models are often tricky to implement, we
refrained from using a non-reference code which may not fairly
reflect the original published method. However, our result table is
meant to be dynamic and filled in by others with their own models
and implementations.

5.3 Thin elastic plates, shells and ribbons
Plates and shells. For plate and shell computations, Computer

Graphics codes compete in attempting to formulate simple yet accu-
rate membrane and bending formulations, as well as their coupling.
For in-plane deformations, linear elasticity has been proven to be
computationally cheap and yet relies on strong theoretical bases
ensuring its accuracy and showing its limits. However, for out-of-
plane deformations, to the best of our knowledge, no model has
been validated yet.
A widespread bending energy for plates or shells in Computer

Graphics has been simultaneously proposed by Grinspun et al.
[2003] and Bridson et al. [2003]. Although the former derived it
from a discretization of the square of the difference of the mean
curvatures and the latter from heuristics, both yield a similar (up
to a scaling coefficient) hinge energy based on the dihedral angle5
between faces at their shared edges. The simplicity of this energy
made it a popular way tomeasure the bending in Computer Graphics
applications [Coros et al. 2012; Skouras et al. 2012; Wang et al. 2011].
Bridson et al. [2003]’s model is part of the Arcsim implementation6
[Narain et al. 2013, 2012] and, introducing a slight modification of
the bending coefficient (from 1

4 to 3), we could readily switch to
Grinspun et al. [2003]’s bending model (see supplementary docu-
ment, Section 3). This modified code is denoted in the following
as Discrete Shell + Arcsim. Note that for Arcsim, we used the
more recent Argus implementation [Li et al. 2018] for the sake of
simplicity (without frictional contact, Argus boils down to Arcsim).
By default we set the adaptive option switched on, otherwise we
refer to Arcsim Non Adaptive.

Another, more recent approach, comes from the discrete geometry
community [Chen et al. 2018; Weischedel 2012]. By replacing met-
rics such as the fundamental forms used in the continuous descrip-
tion of shells by discrete equivalents, new numerical shell models
were derived. The open-source library LibShell [Chen et al. 2018]
implements a discrete shell model based on Koiter’s thin shell energy
following this principle. The code possesses a few variants, char-
acterized by the choice of elastic behavior – Saint Venant-Kirchoff
(StV-K) or Neo-Hookean (NH) laws – and the choice of discretiza-
tion scheme employed for the computation of the normals – one
"first order"MidEdgeAverage and two "second order"MidEdgeSin
and MidEdgeTan schemes [Weischedel 2012]. Note that this over-
all approach departs from traditional finite-elements formulations
which discretize quantities over functional spaces. By incorporat-
ing the [Grinspun et al. 2003]’s bending model into LibShell, we

5Bridson et al. [2003] rely on the sine of the dihedral angle whereas Grinspun et al.
[2003] use the angle itself, which is equivalent in the limit of small angles.
6We used version 0.2.1 of Arcsim, recommended by their authors over version 0.3.1
when shells and fracture are not needed.

were able to test yet another variant of this approach, referred to
as Discrete Shell (+ LibShell). We expect this variant to be close
to Discrete Shell + Arcsim as, in principle, both models use the
same in-plane and out-of-plane energies. Anticipating our results
(Section 7), we however noticed some discrepancies between them.

Ribbons. Lying in between rods and plates, ribbons have recently
regained some interest in the Soft Matter Physics community [Fos-
dick and Fried 2015]. Based on the Sadowsky-Wunderlich theory [Sad-
owsky 1929; Wunderlich 1962], and obtained through dimension
reduction, equations for ribbons have been reformulated as en-
riched Kirchhoff rod equations [Dias and Audoly 2015]. Inspired by
the Super-Clothoid model, an implementation of the Sadowsky-
Wunderlich ribbon model has recently been proposed, based on
elements with a linear normal curvature and a quadratic twist [Char-
rondière et al. 2020]. This work has been published in Mechanical
Engineering, but since it is deeply related to the super-model formu-
lation introduced in Computer Graphics, we have included it in our
study. Moreover, since the model lies in-between rods and plates,
we found it particularly interesting to assess its relevance w.r.t. our
rod and plate tests. We have used the implementation borrowed
from the authors, that will be referred to as Super-Ribbon in the
following.

5.4 Frictional contact
Perhaps one of the most popular model for frictional contact in
Computer Graphics is the Bridson-Harmon algorithm [Bridson et al.
2002; Harmon et al. 2008], which explicitly resolves non-penetration
and Coulomb constraints by successive filters applied to the object
velocity. Such a model is known for yielding satisfying qualitative
results (e.g. avoiding any interpenetration artifact) at a cheap cost.
In contrast, implicit constraint-based methods that were later

introduced in Computer Graphics focus on physical accuracy and
on the accurate capture of the Coulomb threshold. We have selected
the So-Bogus solver [Daviet et al. 2011], where the contact forces
are treated as unknowns and are tied to the velocities through com-
plementarity constraints that are resolved implicitly. This solver has
been successfully used to simulate large assemblies of hair [Kauf-
man et al. 2014] and cloth [Li et al. 2018] . The So-Bogus code is
freely available as a standalone library, and for our tests we coupled
it with the Super-Helix 2Dmodel following the work of Daviet et al.
[2011]. We also use its coupling with the cloth simulator Arcsim,
also known as the Argus code, which is freely distributed by their
authors [Li et al. 2018]. Additionally, we consider the much faster
Projective Friction algorithm, which yields results qualitatively
similar toArgus [Ly et al. 2020]. We used the original code provided
by the authors.

Finally, although theViscous Frictionmodel –which simply sets
friction forces proportional to the object velocity– is not adapted
to solid friction, it is quite often used for its simplicity. We thus
decided to include it in our study to emphasize on its differences
with dry frictional contact models.

5.5 Reference codes of Mechanical Engineering
Originally released in 1978, ©Abaqs [Dassault-Systems 2005] is
a widely used commercial software designed for the numerical
modelling of solid and fluid mechanics as well as electromagnetic
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problems. It is based on finite-elements analysis and supports vari-
ous types of elements (including high-order elements for rods, plates
and shells), both in static and dynamic settings. The user may choose
between a graphical user interface and Python scripting for using
the software. ©Abaqs’s robustness and capability to treat nonlin-
ear problems involving contact, plasticity, etc., as well as explicit
and implicit dynamics, have made it one of the reference tools in
Mechanical Engineering, both in industry and academia. We there-
fore use it as a reference in our validation work, taking advantage
of its many ready-to-use models, and despite the fact that most of
its routines are closed.

In contrast Fenics is an open-source computing platform which
comprises a C++ core engine interfaced with Python [Habera et al.
2018]. Fenics codes are easily parallelized and run on laptops, desk-
tops, or clusters. The Fenics environment allows users to quickly
enter various types of partial differential equations through the Uni-
fied Form Language (UFL) with which users convert mathematical
models into finite-elements formulation in a straightforward way.
FenicsShell is a set of libraries for solving linear and nonlinear
plate and shell models [Hale et al. 2018]. Shear-locking is dealt with
using several techniques, among which MITC (Mixed Interpolation
of Tensorial Components) or PSRI (Partial Selective Reduced Integra-
tion, which we have used). As with UFL the user only has to write
down the elastic energy, the physical model is easily changed and
moreover several Newton and linear algebra solvers are accessible
(including for exemple PETSC). The actual implementations for the
Cantilever and Lateral Buckling tests are based on an example
provided online [Brunetti et al. 2018].

6 METHODOLOGY FOR BENCHMARKING
Comparing a number of codes thoroughly is a particularly challeng-
ing task. Common and unconscious biases include treating codes
heterogeneously, favoring one’s code in place of others’, or failing to
give sufficient details for reliable replication by others. To avoid or at
least limit these pitfalls, we have established a rigorous methodology
which we strive to make reproducible.

6.1 As consistent as possible
Benchmarking codes requires a common methodology even though
the set of tested codes may be fairly diverse. In our case for instance,
some codes may be static while others dynamic, some may use di-
mensionless parameters while others dimensional data. To compare
codes consistently, we should be able to free ourselves from pecu-
liarities and offer clear and non-ambiguous guidelines that can be
followed equally for each code to be tested.

To this aim, we advocate a (possibly iterative) two-step strategy:

(1) First, prepare the simulation scenario, that is find a combina-
tion of physical parameters of the code C able to reproduce
the test T in the right physical regime;

(2) Second, find, by continuation, the optimal numerical parame-
ters of the code C able to “agree with the test”.

After defining the meaning of “agreeing with the test” in terms
of a test error, we formulate our final rule for assessing a code on a
given test.

Test error. Quantifying the proximity of the results produced by
a code C to the expected ones on a given test T can be achieved
by defining an error E(C,T), which measures a distance between
the two. In practice, we compare the reference master curve of the
test T , over its full range, to the one generated by the code C. The
code will be said to be in good agreement with the test result if
the output of the code is indeed a continuous curve at our scale
of observation, and if it matches the reference curve visually (i.e.
E(C,T) < εT with a tolerance εT ≈ 5% of the plot size, in the sense
of the Hausdorff distance).

Consistent solver calibration. For each test, we perform a large
number of simulations by sampling a wide parameter range. From
one parameter bound to another one (e.g. from a small value of
Γ to a large one), the complexity of the simulations (e.g. small de-
formation vs. large deformation) may vary a lot, hence calling for
different tunings of the discretization and numerical solver (number
of elements, timestep, tolerance, etc.). However, to keep benchmarks
as simple as possible, instead of building complex adaptive numeri-
cal strategies, we preferred to find out a common set of numerical
parameters allowing for proper convergence of the solver over the
entire parameter range. In other words, for a given code, the results
reported stem from the same numerical configuration, and only the
physical parameters vary.

Success versus failure. To simplify code evaluation, we have cho-
sen a binary measure of success. A code C is assessed as successful
(OK) on test T if there exists a set of numerical parameters such
that, for any refinement of these parameters and any combination
of physical parameters p which lead to the same regime (or di-
mensionless data) RT of the test, the code output agrees with the
master curve. Otherwise, it is considered as failing (KO) on test T .
Mathematically, this reads

T(C) = OK ⇐⇒ ∃nElts∗, d̄t∗, ¯tol∗ such that
∀n ≥ nElts∗,∀dt ≤ d̄t∗,∀tol ≤ ¯tol∗,∀p ∈ RT , E(C,T) < εT . (9)

As a result, a code C will be marked as KO on test T if we fail to
find a set of physical and numerical parameters passing the test T ,
or, if we just find an arbitrary and isolated set of parameters which
works, without any possible refinement.

Our success rule is thus highly demanding, since it requires, at
the same time, a correct physical (dimensionless) behavior of the
code (∀p ∈ RT ), the numerical convergence in space and time of
the numerical model (∀n ≥ nElts∗,∀dt ≤ d̄t∗,∀tol ≤ ¯tol∗), and the
convergence towards the physical target (E(C,T) < εT ).

Note however that our rule does not discriminate between “fast”
and “slow” codes, in terms of convergence. A code may be qualified
of OK even though it may require a huge mesh resolution or/and
an extremely small time step to reach the target, making such a
configuration impractical. To compare code convergence speed (and
thus their practicability), we hence adjoin the information of the
numerical values (nElts∗, d̄t∗, ¯tol∗) to the test status (OK) in case of
success.

Anticipating on the result section, the reader may take a look at
Table 1, which summarizes all our test results.
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6.2 As fair as possible
Dealing equally with some codes that are yours and some that
have been written by others is difficult, for two main reasons. First,
having a perfect knowledge of the model, its various options, and
the underlying implementation details, of course helps understand
how to tune things and quickly get the most out of the code. This
process might be much slower and may eventually not converge to
the optimal behavior when using a code that one does not master.
Second, it is unconsciously always tempting to spend less efforts on
others’ code to make it work than on one’s code, because of a lack
of neutrality (even though one’s honesty is unquestionable).

In the two cases mentioned above, the risk is clearly to underesti-
mate the potential of others’ code or method7. To mitigate this risk,
we have adopted the principles listed below.

A set of well-experimented programmers. The authors of this paper
who took in charge the benchmarking of Computer Graphics codes
are only senior PhD students, postdocs or permanent researchers
with good programming skills and a minimum experience of three
years with complex programming in Computer Graphics.

Understanding of the underlying numerical model. Fortunately,
most of the numerical models we have been using are well docu-
mented in open publications. Moreover, except for ©Abaqs, we
have access to all source codes, which has allowed us to check
the conformity between the written model and its implementation.
From the publications, we could also verify the limitations of the
proposed algorithm, which generally matched our own observa-
tions. Overall, we were able, in most cases, to make sure that our
observations were consistent (or at least, not contradictory) with
the claims made in the original papers. The ©Abaqs case was the
most problematic one, because it is a closed code and its optimal
usage may require specific training. To limit bias regarding our
usage of this software, two authors of this paper were trained on
©Abaqs for several weeks. Additionally, we have consulted several
colleagues of Mechanical Engineering conducting their research
with ©Abaqs, who could share their expertise with us.

Overall, we estimate we did our best efforts to get the most of
each software in our hands.

Systematic investigation in case of failure. After trying in vain
parameter refinement or various tricks, when it comes that a code
fails to a given test, we strive to analyze the origin of such a failure.
And, if possible, we attempt to provide a (documented) fix to the
code so that it may eventually pass the test. In our study, some of our
fixes helped in succeeding a test, while others did improve results
but not to the point of a success.

Future evaluations. Finally, despite all these precautions, there is
theoretically always a small probability that we may have mislead-
ingly categorized a code as a failure on a given test, because we may
have failed to test all possible alternatives. In this case, we may have
unwillingly produced false negatives. In contrast, given the high
requirement level of each test, we believe that false positives are
extremely unlikely to arise. Hence, successful codes can reasonably

7Given the high level of requirement of each proposed test, we believe, in contrast, that
overestimating results of one’s code is impossible albeit being of bad faith. See also our
discussion about false negatives and false positives in the end of this section.

be considered as certified by our study, under their precise condition
of usage.

To mitigate the possible limitation on false negatives, we count on
future benchmarking made by the community to refine and enrich
our results. This is why reproducibility of our methodology is of
foremost importance.

6.3 As reproducible as possible
Our goal is twofold. First, allow others to reproduce our bench-
marking results (at least for publicly available codes). Second, allow
others to validate rigorously their own models or codes, following
our exact procedure. Our supplementary material “Recipe Manual
for Validation” should give all the necessary algorithms and infor-
mation to meet these two objectives. We also plan to deliver data
regarding the reference master curves to compare against.

7 BENCHMARKING RESULTS
The general results of our benchmarking study are summarized in
Table 1. As mentioned sooner, OK is the success score, while KO
denotes a failure. A dash (–) indicates that the test is not applicable
to the corresponding code, while a cross (×) shows that we have
not tried to test the code because of expected failure. From these
results one can already make a few important observations.
First, the most well-known rod models of Computer Graphics,

namely Discrete Elastic Rod and Super-Helix (and its higher-
order counterpart Super-Clothoid), perfectly pass the two rod tests
Cantilever andBend-Twist. This is not surprising, as these models
have benefited from physical insights from their construction stage.
Furthermore, these codes have already been cross-validated [Casati
and Bertails-Descoubes 2013] and used in other communities like
Soft Matter Physics [Audoly and Pomeau 2010; Jawed et al. 2014].

In contrast, the popular adaptive model Arcsim for plates fails on
Cantilever, even though it is a mere 2D test. We carefully analyze
such failure and attempt to provide a fix to the code.
Then, the only Computer Graphics code able to cope with the

demanding Lateral Buckling test is LibShell, although its success
depends on the exact choice of the bending energy formulation.
Note that FenicsShell successfully passes the test as well.

Regarding frictional contact, most Computer Graphics solvers fail
on the Stick-Slip test, mainly due to a lack of accuracy at conver-
gence. The only successful Computer Graphics code is So-Bogus,
provided a low tolerance of the solver is used.
Finally, the commercial package ©Abaqs, widely used in me-

chanics, performs moderately well. While it easily passes Can-
tilever and Stick-Slip, it surprisingly has a hard time on Bend-
Twist, which is in contrast perfectly passed by the three Computer
Graphics codes for rods that we have tested. It similarly fails on
Lateral Buckling, where both LibShell and FenicsShell succeed.

Our results and observations are further detailed and commented
on in the remainder of this section. Please also watch our accompa-
nying video for an illustration of our benchmarking study. Many
further information such as convergence plots or detailed experi-
ments and results are provided in supplementarymaterial. Moreover,
our second supplementary material, called “Recipe Manual for Vali-
dation”, explains all the rules, criteria and tips that we have been
using to conduct the study thoroughly.
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Table 1. General result summary of all the benchmarks we have performed.

Tested Code Cantilever Bend-Twist Lateral Buckling Stick-Slip
Rod
Discrete Elastic Rod [Bergou et al. 2010] OK (300 elts) OK (200 elts) – –
Super-Helix [Bertails et al. 2006] OK (50 elts) OK (30 elts) – –
Super-Clothoid [Casati and Bertails-Descoubes 2013] OK (20 elts) OK (25 elts) – –
Ribbon
Super-Ribbon [Charrondière et al. 2020] OK (20 elts) – KO –
Plate
LibShell [Chen et al. 2018] OK (Res 0) – OK (Res +) –
Discrete Shell (+ LibShell) [Grinspun et al. 2003] OK (Res +) – KO –
Arcsim [Narain et al. 2012] KO – × –
Discrete Shell + Arcsim (tentative fix of Arcsim) KO – × –
Projective Dynamics [Bouaziz et al. 2014] (fit) KO – × –
Contact & friction
Viscous Friction (+ Super-Helix 2D) – – – KO
So-Bogus [Daviet et al. 2011] (+ Super-Helix 2D) – – – OK (dt=0.5 ms, tol = 10−13 N)
Argus (≈ Arcsim + So-Bogus) [Li et al. 2018] – – – KO
Argus Non Adaptive (fix of Argus) – – – OK (dt=0.5 ms, tol = 10−13 N)
Bridson-Harmon [Bridson et al. 2002; Harmon et al. 2008] – – – KO

(+ Arcsim)
Projective Friction [Ly et al. 2020] – – – KO
Reference codes in Mechanical Engineering
FenicsShell [Hale et al. 2018] OK (Res 0, P2,3 elts) – OK (Res 0, P2,3 elts) –
©Abaqs OK (200 P2 elts) KO KO OK (dt=9 µs)

7.1 Results on the Cantilever test
TheCantilever test stands for an interesting 2D protocol to validate
the bending formulation of all kinds of models – rods, ribbons, and
plates – whether they are inextensible or not. Indeed, even though
the master curve has been derived in the mere inextensible case, it
remains valid in the presence of stretching within the range of Γ
used, Γ < 104. When simulating a simple finite-difference rod model
allowing for both bending and stretching, we were able to check that
the in-plane elongation remains indeed negligible (≈ 1% at Γ ≈ 104).
In the codes allowing for stretching and shearing, we made sure to
take a negligible thickness h ≪ w so that bending is the preferred
deformation mode.
Even though it remains difficult to compare finely two models

discretized with different approaches (e.g. , finite-elements against
models based on discrete differential geometry), we made sure we
were using similar mesh resolutions for all the plate models that
we have tested. For the Cantilever test we have typically used two
kinds of meshes: a Res 0 mesh, made of 120 discretization nodes
along the length, and a Res + mesh with a double-size resolution.

Figure 6 presents the results for all the tested codes. Except Arc-
sim (whose results are shifted) and Projective Dynamics (whose
results are too scarce), all the codes are in excellent agreement with
the master curve. However, for some bending plate models like
Discrete Shell, an increased resolution (Res +) was needed to
cover the range 103 < Γ < 104 properly. Computation time ranges
between ≃ 1 h (for most models) and a few hours (for nodal models
requiring a high number of elements or a high-resolution mesh).

Bridson et al. vs Grinspun et al.’s bending energy. Naturally, since
Arcsim’s bending energy [Bridson et al. 2003] only differs from
that of Discrete Shell [Grinspun et al. 2003] by a multiplicative
factor, both cannot pass the test. Our test thus allows to discriminate
between the two factors, leading to the conclusion that Grinspun et
al.’s factor is the correct one (see Figure 7, top).

Fig. 6. Results on the Cantilever test.

However, we found the Grinspun et al. [2003]’s discrete energy
to converge much more slowly compared to other mesh-based ap-
proaches like LibShell or FenicsShell. In practice, we had to use a
twice asmore resolutemesh (Res+) forDiscrete Shell (+ LibShell)
to observe a good agreement with the master curve.
Interestingly, Grinspun et al. [2006] report that Discrete Shell

does not converge in the general case, albeit in the case of triangular
meshes with equilateral triangles. Our meshes were close to this
ideal case, which probably explains our observation of convergence.

Investigations on Arcsim. After fixing Arcsim with the correct
factor (Discrete Shell + Arcsim), we observe a reduction of the

ACM Trans. Graph., Vol. 40, No. 4, Article 66. Publication date: August 2021.



66:14 • Romero, V. et al

(a) Bridson 2003
(+ LibShell) Res +

(b) Discrete Shell
(+LibShell) Res +

(c) Arcsim (d) Discrete Shell + Arcsim
Inset: Non Adaptive, Res +

Fig. 7. Attempting to fix Arcsim results on Cantilever by using the Dis-
crete Shell bending energy. Top: Comparing Bridson et al.’s bending for-
mula (a) to Grinspun et al.’s one (b), in combination with LibShell’s mem-
brane energy. Bottom: original Arcsim results (c) and tentative fix (d) by
using Grinspun et al.’s bending formulation (d). Increasing resolution (inset)
unfortunately does not help improve results.

shift w.r.t the master curve. Nevertheless, results lie slightly below
the curve and remain excessively scattered, as illustrated in Figure 7,
bottom. Testing the code in its non-adaptive version and using an
increased mesh resolution unfortunately did not help, as shown
in the inset of Figure 7d. This result is all the more surprising as
when using the LibShell membrane part (instead of the Arcsim
membrane part), we easily check that replacing Bridson’s factor
with Grinspun’s factor nicely removes the shift (Figure 7, top). In-
vestigating further such discrepancies in Arcsim was out of the
scope of the present study, and we leave it for future work.

High Γ values. The region Γ > 103 is numerically challenging for
the codes as the expected shapes are rods/ribbons heavily bent at
the clamp and then almost vertical. Curvature-based models such as
Super-Helix or Super-Ribbon can easily capture this phenomenon
with few elements (50 and 20 elements, respectively). However,
nodal models like Discrete Elastic Rod, LibShell or Discrete
Shell + Arcsim require meshes with a fairly good resolution around
the clamp (the latter requiredmeshes twice as resolute as the former).
For plates, without a sufficient resolution, the resulting mesh is
unable to capture the smoothness and the results start to scatter
(see supplementary document, for example Figure 28h).

A way to circumvent this issue would be to use adapted meshes,
by subdividing more around the clamp. Additionally, for all models
including rods, this would have the advantage to reduce the time
spent in performing the test. However, for the sake of simplicity,

we decided in the present study to use uniform meshes for all the
tested codes (except Arcsim in its original version).

Successful ©Abaqs. The ©Abaqs software easily passes the
test. Note that 200 2D Timoshenko beam elements with quadratic
interpolation functions have been used. Based on a Newton solver
with automatic stabilization, 200 static equilibria where foundwithin
approximately 1 hour (no warm-start, only changing the length of
the rod every independent computation).

Tentative fitting of Projective Dynamics. Finally, the Projective
Dynamicsmethod, which relies on arbitrary (non-physical) weights
in front of its three energy terms (gravity G , stretch S , bend B), pro-
vides a good example of calibration offered by our method. We can
indeed fit at least its bending weight against the Cantilever master
curve. We take h ≪ w , for each vertexG = 1/3Aρhд where A is the
area adjacent to the vertex, S = Eh, and B = αEh3/(12 − (1 − ν2)).
We found that for our implementation of Projective Dynamics,
α = 0.25 gives the best agreement to the master curve. However,
the output values yielded by the Projective Dynamics code are
scarce as the regime of this experiment is not favorable to the con-
vergence of the method. In practice, we did not find any appropriate
solver parameters allowing for a sampling as dense as for the other
codes. Indeed, in this experiment the stretching coefficient S is much
greater than the bending coefficient B, leading to a poor conver-
gence of the local/global scheme, which is even worse at low Γ’s
where G becomes much smaller than B. Nonetheless, the code pro-
duces fairly good results in the range 0.1 < Γ < 500 beyond which
it crosses the master curve and departs from it.

7.2 Results on the Bend-Twist test
The Bend-Twist test allows to challenge twist formulation of 3D
rod models and displays a known numerical limit between 2D and
3D deformed configurations as explained in Section 4.3. Our three
codes for rods, namely Discrete Elastic Rod, Super-Helix, and
Super-Clothoid, as well as ©Abaqs, were tested on this protocol.

Figure 8 shows that all the codes except ©Abaqs perform well.
However, as the protocol is much more demanding than the Can-
tilever test, the simulation setup needs to be carefully designed.

Successful graphics rod models. The three rod models from Com-
puter Graphics yield perfect results, provided enough elements are
used for highly curved rods (200 elements for the nodal model Dis-
crete Elastic Rod, 30 and 20 elements for the curvature-based
models Super-Helix and Super-Clothoid, respectively). The in-
terested reader can see convergence plots in the supplementary
material (Section 1).
Yet, to yield successful results, important details in the setup

deserve to be emphasized. First, to generate a 3D configuration,
it is generally needed to start from an initially 3D rod (otherwise
there is a risk that the rod remains in an unstable 2D state). If
one starts from an initially 2D curved rod, one idea is to apply a
small transverse perturbation at the beginning of the simulation.
Second, for this test it is crucial to make sure that dynamic models
(Discrete Elastic Rod and Super-Helix) have perfectly stabilized
after each simulation. Otherwise there is a high risk to label wrongly
a 2D configuration as a 3D one. For large φ and Γ (long and curly
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(a) Discrete Elastic Rod (OK) (b) Super-Helix (OK) (c) Super-Clothoid (OK) (d) ©Abaqs (KO)

Fig. 8. Results of the Bend-Twist test.

rods, forming a hook), such a stabilization can take a long time. We
have spent many efforts attempting to reduce this time by damping
the system, or using warm-starting (for a given point of the phase
diagram, start from the final configuration of its left neighbor on
the same line). Still, the time needed for Discrete Elastic Rod and
Super-Helix ranges from 6 hours to one day, while it was just about
one hour for the static Super-Clothoid code.

Difficulties for ©Abaqs. Similarly to Super-Clothoid, we have
used ©Abaqs with a static version relying on the Newton method.
But as Super-Clothoid converges to the correct equilibria on the
whole set of parameters with 20 elements, ©Abaqs gives wrong
results close to the 2D/3D frontier and at large natural curvature
φ/2π . Increasing the number of elements (up to 785 for the largest
φ/2π value), adding some stabilization parameters to the Newton
algorithm, and using previously computed deformed configurations
as warm starts, all greatly improve a phase diagram that was initially
much worse than the one presented in Figure 8d. But after days of
trying, we have not been able to obtain entirely satisfactory results.

7.3 Results on the Lateral Buckling test
The Lateral Buckling test can be seen as an extension of the Can-
tilever test to elastic plates. Although both tests are meant to eval-
uate the bending formulation, the former is much more demanding
than the latter. Indeed, Cantilever is a 2D test, whereas Lateral
Buckling incorporates 3D effects through the width and is subject
to a pitchfork instability (transverse buckling). A code not working
perfectly well on Cantilever has little chance to pass the Lateral
Buckling test. Hence, we consider as eligible for the Lateral Buck-
ling test only the plate/shell codes that successfully passed the
Cantilever test (OK), that is, Super-Ribbon, LibShell, Discrete
Shell (+ LibShell), FenicsShell, and ©Abaqs. Each code took at
most a few hours for performing the whole test.

Figure 9 summarizes our results. Only LibShell and FenicsShell
manage to pass this challenging test. As in the Cantilever test, we
have used several kinds of mesh resolutions (yet different from those
used for Cantilever): Res 0 (respectively Res +, Res ++) typically
comprising respectively 50 (resp. 75, 100) points along the length
and 50 ×w/L (resp. 75 ×w/L, 100 ×w/L) along the width.

Inaccuracy of Discrete Shell. Investigating further the failure of
Discrete Shell, we found out that its bending formulation does not
converge fast enough to yield a threshold in the range 0 < Γ∗ < 40

displayed in Figure 9. The threshold actually shows up at Γ∗ > 50,
as shown in Figure 10a. The evolution of the threshold is linear, but
with a steeper slope compared to the theory. We tried to improve re-
sults by increasing again the resolution of the mesh (Res +, 75 points
along the length). However the threshold curve remained equally
shifted from the theoretical master curve (Figure 10b), showing that
the method would not converge to the right solution.

Failure of ©Abaqs. Apart from two values ofw/L = 0.1 and 0.2
for which the transition between 2D and 3D equilibrium shapes
are correctly predicted by ©Abaqs, the latter returns no result
for w/L > 0.2. The reason of this failure lies in the incapacity of
the Newton solver to converge to the starting point of the demand-
ing Lateral Buckling protocol. Although an equilibrium is always
found when the plate is slightly tilted at Γ∗ = 40, when one strives to
remove this rotation angle, the Newton solver keeps diverging what-
ever the stabilization options and the mesh resolution forw/L > 0.2,
so that the Lateral Buckling experiment cannot even start.

Limitation of the Wunderlich ribbon model. Based on a one dimen-
sional formulation, the Super-Ribbon code nevertheless exhibits
a correct linear dependence of Γ∗ with respect to w/L, although
it displays a clear offset from the theoretical curve. We found out
that this offset was caused by the developability constraint of the
Wunderlich ribbon model, which turns out to be unrealistic in the
Lateral Buckling test. Indeed, due to the orientation of the clamp,
in-plane extension and shear are bound to happen. To overcome
this limitation while still benefiting from a reduced formulation, it
would be interesting to develop a stretchable ribbon model.

Discriminating LibShell variants. As in the Cantilever test, we
note that the elastic law has little impact here, hence we evaluate
LibShell using only the Saint-Venant Kirchhoff (StV-K) material.
All the variants of LibShell pass the test, however it appears that
the discretization schemes for the discrete normals computation are
discriminated by this test. Indeed, the two "second-order" models
MidEdgeSin andMidEdgeTan pass at the resolution Res + while
the "first-order" modelMidEdgeAverage requires an even increased
resolution Res ++ (see supplementary document, Figure 13).

Successful FenicsShell. It is noteworthy that FenicsShell suc-
cessfully passes the test using default resolution meshes, in compar-
ison with LibShell which requires higher resolution meshes. This
can probably be explained by the fact that FenicsShell relies on
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(a) Super-Ribbon
Wunderlich Clamped (KO)

(b) LibShell
StV-K/MidEdgeSin Res + (OK)

(c) Discrete Shell
(+ LibShell) Res + (KO)

(d) FenicsShell
Res 0 (OK)

(e) ©Abaqs
Res 0 (KO)

Fig. 9. Results of the Lateral Buckling test.

(a) Discrete Shell
(+ LibShell) Res 0

(b) Discrete Shell
(+ LibShell) Res +

Fig. 10. Detailed results of the Lateral Buckling test for Discrete Shell
and our two different mesh resolutions up to Γ∗ = 80.

high-order elements (P2,3), with faster convergence compared to
LibShell.

Complementary rotation experiment. The interested reader can re-
fer to our supplementary document (Section 5) for an additional test
based on this experiment. In this complementary test, the clamped
orientation is tilted by an angle α from the vertical direction, and
we record the continuous value of the lateral displacement dy as α
is varied. This rotation test has the advantage of yielding a smooth
signal in place of the present binary output of the Lateral Buckling
test, thus being less demanding compared to our retained test. In
particular, it can be leveraged to analyze failures on the Lateral
Buckling test.

7.4 Results on the Stick-Slip test
Finally, the Stick-Slip test assesses the ability of a code to properly
capture the sticking-slipping threshold of Coulomb’s friction. Fig-
ure 11 gathers our results obtained on our six different codes for a
planar rod (or a plate) subject to frictional contact.

Successful So-Bogus. We first notice that the Stick-Slip test is
particularly demanding, as among our tested Computer Graphics
solvers, only the nonsmooth implicit So-Bogus solver is able to pass
it, whether being coupled to a planar rod model like Super-Helix
2D or to a plate model like Arcsim – incorporated within Argus.

Yet, it must be noted that for successful agreement with the mas-
ter curve, one has to carefully set the parameters of the simulation,
such as the solver tolerance and the timestep. We set the timestep to

0.5 ms and the solver tolerance to 10−13 N. Furthermore, it is neces-
sary to ensure the quasi-static behavior of the dynamic simulators
when replicating the experiment. A detailed study on convergence
of So-Bogus utilizing the Super-Helix 2D model is provided in the
supplementary material, Figure 16.

No adaptivity forArgus. While the bending formulation of Super-
Helix 2Dwas validated onCantilever, it is not the case forArcsim:
we have seen in Section 7.1 that Arcsim’s bending energy (relying
on Bridson et al. [2003]’s model) had to be fixed by a constant factor.
Moreover, despite this fix, the agreement to the master curve re-
mained unsatisfactory. Interestingly, succeeding in the Cantilever
test is not necessary for Argus to pass the Stick-Slip test, which
demonstrates the independence of the latter with respect to the
relative scaling of the bending and gravitational energies. This way
we retrieve the results previously obtained by Rasheed et al. [2020].
However, although it generates fair results, the original adaptive
version of Argus does not properly match the master curve, pre-
sumably due to small impacts during adaptive refinement: we had
to disable adaptivity in the Argus code to pass the Stick-Slip test
(see Figures 11c and 11d), as was also done by Rasheed et al. [2020].

Insufficient accuracy for explicit solvers. Explicit frictional contact
solvers from Computer Graphics, such as Bridson-Harmon and
Projective Friction, suffer from a lack of accuracy and are not able
to pass the Stick-Slip test, even when using a small timestep and/or
a large number of iterations. For both solvers we test a timestep
down to 0.1 ms, and observe no improvement over refinement.
For Projective Friction we test the number of local/global itera-
tions up to 500. Note that unlike Viscous Friction, both methods
do capture a stick-slip threshold, but they yield excessive sticking
due to their projective nature. This is especially prominent in the
Bridson-Harmon method, which systematically overestimates the
slipping threshold. Our study thus confirms the observations previ-
ously made by Li et al. [2018] when comparing Argus to Bridson-
Harmon. In contrast, Projective Friction manages to generate
a correct threshold value for moderate friction coefficients (up to
µ = 0.25). Yet, in accordance with Ly et al. [2020]’s observations,
the model reaches a convergence plateau which binds it to a mere
sticking behavior for higher µ values.

Successful results for ©Abaqs. Finally, ©Abaqs performs very
well on the Stick-Slip test. We work in a 2D-space and use 40 Tim-
oshenko isoparametric beam elements with quadratic interpolation
(B22) to model Sano’s rod. The rod motion is simulated thanks to
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an explicit dynamic analysis with large Rayleigh internal damping
(α = 10) to damp the lower frequencies that could appear. Con-
tacts between the bottom surface and the beam nodes are enforced
with a kinematic contact algorithm (predictor-corrector algorithm
that modifies accelerations to obtain a corrected configuration in
which the contact constrains are enforced). The contact tangential
behavior is a basic Coulomb friction model with static friction µ.
Sticking between the rod and the bottom surface is ensured by a
penalty method. The minimal increment being 9.223 × 10−6 s to
ensure stability of the explicit scheme for a total time of 60 s for one
Stick-Slip test, it takes over 6.5 × 106 increments for a CPU time
of approximately 1 hour in total.

(a) Viscous Friction
(+Super-Helix 2D) (KO)

(b) Bridson-Harmon
(+Arcsim) (KO)

(c) Argus (KO) (d) Argus Non Adaptive (OK)

(e) So-Bogus
(+Super-Helix 2D) (OK)

(f) Projective Friction (KO)

(g) ©Abaqs (OK)

Fig. 11. Results of the Stick-Slip test.

8 LIMITATIONS AND FUTURE WORK
In our study we have provided a rich set of protocols to validate
physically any numerical simulator for rods, plates, or frictional
contact. Still, our framework does not cover all possible validation
facets and could be further developed to handle more complex cases.

Validation versus verification. As recalled by Museth [2020], vali-
dation queries the ability of a simulator to solve the correct physics,
whereas verification deals with the correct numerical solving of a
given model [Pham 1999]. In that sense, our study focuses on the
physical validation of numerical codes, not on their numerical veri-
fication. Indeed, numerical verification is only meaningful once one
knows exactly the (continuous) physical model from which the code
derives, as well as the physical validity of this model. While this is
often the case in Mechanical Engineering, which clearly decouples
the use of well-established physical models from their subsequent
finite-element discretization, this is not necessarily the case in Com-
puter Graphics, where simulators may be directly written as new
numerical models integrating physics and numerics altogether. Our
validation methodology then allows us to treat equally simulators
deriving from a continuous physical model from that directly writ-
ten on a discrete form, making it applicable to any numerical model.
However, we have seen that numerical verification, such as the

proof of numerical convergence, often turns out to be a prerequisite
to physical validation. For instance, a suitable choice of numerical
parameters (time step, number of elements) can only be done if one
has the guarantee that results will improve over refinement. Con-
vergence studies are not always conducted in Computer Graphics
papers, and we encourage the authors of new models to provide
them systematically in the future.

While convergence is indirectly assessed by our protocols, other
relevant numerical properties are however not evaluated. Typically,
important features that we miss are the objectivity of the model –
i.e. its invariance w.r.t. rigid motion [Crisfield and Jelenić 1998] –
and non-locking – i.e. the ability of the model to continue converg-
ing properly upon some parameter refinement, typically when the
thickness of the structure tends towards zero [Arnold and Brezzi
1997]. We plan to investigate these issues in the future.

Towards more complex physical protocols. Although richer than
the one commonly used, our protocols remain too elementary to
evaluate the full richness of Computer Graphics simulators. To aug-
ment their validation potential, one first step would be to consider
dynamical scenarios, such as vibrating structures [Virgin 2007].
More complex contacting scenarios, such as 2D and 3D confinement
of buckled slender structures [Roman and Pocheau 2002], could also
be considered. An extension of our methodology to the validation
of thin shells would also be valuable, but finding relevant master
curves, which exploit characteristic instabilities depending on a
limited set of dimensionless parameters, remains a challenging task.
Finally, to be able to deal with fully integrated phenomena that

are common to Computer Graphics scenarios (large fiber assemblies,
cloth with frictional contact, etc.), one should develop some inno-
vative experimental setups. We believe such a large step forward
will only be possible through a strong cooperation between experts
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from the three communities Computer Graphics, Mechanical En-
gineering, and Soft Matter Physics. We hope our paper will foster
more research in this fascinating pluridisciplinary area.

9 CONCLUSION
We have proposed a new framework to validate quantitatively the
physical realism of numerical simulators for rods, plates and fric-
tional contact. Our methodology relies on the introduction of four
physical protocols inspired from experimental measurement se-
tups of Soft Matter Physics. As these protocols exhibit macroscopic
instabilities which depend on very few dimensionless physical pa-
rameters, they are characterized by a clear master curve against
which any code can be robustly compared. This way, we can easily
determine whether a code successfully passes each validation test,
and thus evaluate its level of physical realism. We have tested a
number of representative codes from Computer Graphics, as well
as two reference codes from Mechanical Engineering. Our results
demonstrate that even though some popular codes fail, some may be
improved upon slight modification. Furthermore, remarkably a few
Computer Graphics codes do succeed on all tests and even perform
better than reference models of Mechanical Engineering. We hope
that our study will help the Computer Graphics community better
assess and diffuse their models in the future, and that the set of
proposed protocols will be enriched by a joined work across the
communities.
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